← Back to Home

Motor and cognitive effect caused by motor increased activity in primary school

Formazione & insegnamento

ISSN: 2279-7505 | Published: 2018-04-30

This landing page is part of an alternate academic indexing and SEO initiative curated by Pensa MultiMedia and the Executive Editorial Office.

Access and Full Texts

Main Article Landing Page: https://ojs.pensamultimedia.it/index.php/siref/article/view/2765

Full Text HTML (viewer): missing data

Full Text PDF (viewer): https://ojs.pensamultimedia.it/index.php/siref/article/view/2765/2440

Full Text HTML (file): missing data

Full Text PDF (file): https://ojs.pensamultimedia.it/index.php/siref/article/download/2765/2440

Alternate URL (this mirror): https://formazione-insegnamento.eu/2018-16/1-Suppl/2765-motor-and-cognitive-effect-caused-by-motor-increased-ac

Authors

General Metadata

Metadata (EN)

Title: Motor and cognitive effect caused by motor increased activity in primary school

Abstract: In this project was analysed how motor function affect the association betweenexercise, motor benefits and self-efficacy. This work was carried outin the first and second grades of primary school.The motoring education program involved 107 children between the agesof 6 and 8 for 6 month. The normal motor activity was replaced by two hoursof experimentation.Shuttle run test measured motor skills and self-efficacy perception beforeand after experimentation.The data measured in the subjects involved in the experiment and in thecontrol group were compared before and after experimentation.The obtained results prove that motor increased activity has positive effectson the motor and cognitive range. (self-efficacy).

Keywords:

Metadata (IT)

Title: Effetti motori e cognitivi dati dall'attività motoria potenziata nella scuola primaria

Abstract: In questo studio è stato attuato un intervento motorio nelle prime e secondeclassi della scuola primaria, analizzando l'associazione tra eserciziofisico, benefici motori e dell'autoefficacia.Centosette bambini tra i 6 e gli 8 anni sono stati assegnati ad un programmadi educazione motoria potenziato di 6 mesi; l'ora curriculare è stata sostituitada due ore di sperimentazione. Le prove di pre e post intervento hannovalutato la capacità motoria (SHUTTLE RUN TEST) e la percezione dell'autoefficacia.I dati ottenuti sono stati confrontati prima e dopo l'intervento, nei soggettiimpiegati nella sperimentazione e nel gruppo di controllo.Questi risultati evidenziano la possibilità di aumentare, mediante un'attivitàmotoria potenziata, gli effetti positivi a livello motorio e della sfera cognitiva(autoefficacia).

Keywords:

Metadata (FR)

Title: Effets moteurs et cognitifs donnés par l'activité motrice améliorée à l'école primaire

Abstract: Dans cette étude, une intervention motrice a été mise en œuvre dans les première et secondes de l'école primaire, analysant l'association entre l'exercice, les avantages motrices et l'auto-efficacité. Hydosettes Les enfants entre 6 et 8 ans ont été affectés à un programme d'éducation motrice améliorée à 6 mois;L'heure du programme a été remplacée par deux heures d'expérimentation.Les tests de pré-intervention pré et post-post-intervention ont rendu hannvalisé la capacité du moteur (test de navette) et la perception de l'auto-efficacité. Les données obtenues ont été comparées avant et après l'intervention, chez les sujets utilisés dans l'expérimentation et dans le groupe témoin. Ces résultats mettent en évidence la possibilité d'augmenter, à travers une activité améliorée, les effets positifs au niveau du moteur et la sphère cognitive (auto-efficacité). (This version of record did not originally feature translated metadata in this target language; the translation is hereby provided by Google Translation)

Keywords:

Metadata (ES)

Title: Efectos motores y cognitivos dados por la actividad motora mejoradas en la escuela primaria

Abstract: En este estudio, se implementó una intervención motora en el primer y segundo segundo de la escuela primaria, analizando la asociación entre el ejercicio, los beneficios motorizados y la autoeficacia. Los niños de Hydosettes entre 6 y 8 años han sido asignados a un programa de educación motora mejorada de 6 meses;La hora curricular ha sido reemplazada dos horas de experimentación.Las pruebas de intervención previa y posterior a la intervención de la capacidad motor (prueba de ejecución de transbordadores) y la percepción de la autoeficacia. Los datos obtenidos se compararon antes y después de la intervención, en los sujetos utilizados en la experimentación y en el grupo de control. Estos resultados destacan la posibilidad de aumentar, a través de una actividad mejorada, los efectos positivos a nivel motor y la esfera cognitiva (autoeficacia). (This version of record did not originally feature translated metadata in this target language; the translation is hereby provided by Google Translation)

Keywords:

Metadata (PT)

Title: Efeitos motores e cognitivos dados pela atividade motora aprimorados na escola primária

Abstract: Neste estudo, uma intervenção motora foi implementada nos primeiros e segundos segundos da escola primária, analisando a associação entre exercício, benefícios motores e auto -eficácia. As crianças de Hydosettes entre 6 e 8 anos foram designadas para um programa de educação motor aprimorada de 6 meses;A hora curricular foi substituída duas horas de experimentação.Os testes de pré e pós -intervenção hannvalizaram a capacidade do motor (teste de execução de ônibus) e a percepção da auto -eficácia. Os dados obtidos foram comparados antes e após a intervenção, nos sujeitos utilizados na experimentação e no grupo controle. Esses resultados destacam a possibilidade de aumentar, através de uma atividade aprimorada, os efeitos positivos no nível motor e na esfera cognitiva (auto -eficácia). (This version of record did not originally feature translated metadata in this target language; the translation is hereby provided by Google Translation)

Keywords:

References

Banich, M.T. (2009). Executive Function: The search for an integrated account. Current Directions in Psychological Science, 18, 89–94

Battig, W.F. (1972). Interference During Learning as a Sources of Facilitation in Subsequent Retention and Transfer.

Bechara, R.G., Kelly, Á. M. (2013). Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behavioural brain research, 245, 96-100

Bjorklund, D.F., Ellis, B.J. (2014). Children, childhood, and development in evolutionary perspective. Developmental Review, 34, 225-264

Bjorklund, D. F., Beers, C. (2016). The adaptive value of cognitive immaturity: Applications of evolutionary developmental psychology to early education. In Evolutionary Perspectives on Child Development and Education (pp. 3-32). Springer International Publishing.

Brady, F. (2008). The contextual interference effect and sport skills. SAGE Journals, 106, 461–472

Carey, J.R., Bhatt, E., Nagpal, A. (2005). Neuroplasticity promoted by task complexity. Exercise and Sport Sciences Reviews, 33, 24–31

Cassilhas, R.C., Tufik, S., de Mello, M.T. (2016). Physical exercise, neuroplasticity, spatial learning and memory. Cellular and Molecular Life Sciences, 73, 975-983

Chaddock, L., Pontifex, M.B., Hillman, C.H., Kramer, A.F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the International Neuropsychological Society, 17, 975–985. Chaddock-Heyman, L., Erickson, K. I., Prakash, R. S., Vanpatter, M., Voss, M. W., Pontifex, M.

B., Raine, L.B., Hillman, C.H., Kramer, A.F. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32, 249–256. Chaddock-Heyman, L., Erickson, K.I., Voss, M.W., Knecht, A.M., Pontifex, M.B., Castelli,.

D.M., Hillman, C.H., Kramer, A.F., (2013). The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Frontiers in Human Neuroscience, 72, 1-13

Chaddock-Heyman, L., Hillman, C.H., Cohen, N.J., Kramer, A.F. (2014). The importance of physical activity and aerobic fitness for cognitive control and memory in children. Monographs of the Society for Research in Child Development, 79, 25-50. Churchill, J.D., Galvez, R., Colcombe, S., Swain, R.A., Kramer, A.F., Greenough, W.T., (2002). Exercise, experience and the aging brain. Neurobiology of Aging, 23, 941–955

Cotman C.W., Berchtold N.C., Christie L.A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472. da Silva, S.G., Doná, F., da Silva Fernandes, M.J., Scorza, F.A., Cavalheiro, E.A., Arida,.

R.M.(2010). Physical exercise during the adolescent period of life increases hippocampal parvalbumin expression. Brain and Development, 32, 137-142

Diamond A. (2006). The early development of executive functions. In E. Bialystok, F.I. Craik (Eds.), Lifespan cognition: Mechanisms of change (pp. 70-95). Oxford, IL: Oxford University Press. Dishman, R.K., Berthoud, H.R., Booth, F.W., Cotman, C.W., Edgerton, V.R., Fleshner, M.R., Gandevia, S.C., Pinilla, F.G., Greenwood, B.N., Hillman, C.H., Kramer, A.F.,Levin, B.E., Moran, T.H.,Russo-Neustadt, A.A.,Salamone, J.D.,van Hoomissen, J.D., Wade, C.E., York,.

D.A.,Zigmond, M.J. (2006). Neurobiology of exercise. Obesity, 14, 345–356

Edelman, G. M. (1993). Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron, 10, 115–125

Erickson, K.I., Hillman, C.H.,Kramer, A.F., (2015). Physical activity, brain, and cognition.Current Opinion in Behavioral Sciences, 4, 27-32

Gottlieb, G., (2007). Probabilistic epigenesis. Developmental Science, 10, 1-11

Hillman, C.H., Erickson, K.I., Kramer, A.F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65

Holmes, P.V.(2006). Current findings in neurobiological systems’ response to exercise. In: L. Poon, W. Chodzo Zajko, P.D. Tomporowski (Eds.), Active living, cognitive functioning, and aging (pp. 75-89). Champaign, IL: Human Kinetics. Effetti motori e cognitivi dati dall’attività motoria potenziata nella scuola primaria 109

Kramer, A.F., Erickson, K.I. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function .Trends in Cognitive Sciences, 11, 342–348

Lickliter, R., Honeycutt, H. (2015). Biology, Development, and Human Systems. Handbook of Child Psychology and Developmental Science, 5, 1-46. Lubans, D., Richards, J., Hillman, C., Faulkner, G., Beauchamp, M., Nilsson, M., Kelly, P.,.

Smith, J., Raine, L., Biddle, S. (2016). Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatric, 138

McMorris, T., Collard, K., Corbett, J., Dicks, M., Swain, J.P. (2008). A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacology, Biochemistry and Behavior, 89, 106–115. Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M.,.

Sloan, R., Gage, F.H., Brown, T.R., Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences USA, 104, 5638-5643

Ploughman, M., Attwood, Z., White, N., Doré, J.J.E., Corbett, D. (2007). Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. European Journal of Neuroscience, 25, 3453–3460

Santos, R., Mota, J. (2011). The ALPHA health-related physical fitness test battery for children and adolescents. Faculty of social sciences – papers, 26, 1199-1200 Smith, P.J., Blumenthal, J.A., Hoffman, B.M., Cooper, H., Strauman, T.A., Welsh-Bohmer, K.,.

Browndyke, J.N., Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med, 72, 239–252

Thelen, E. (1985). Developmental origins of motor coordination: Leg movements in human infants. Developmental Psychobiology, 18, 1–22

Thelen, E., Kelso, J.A.S., Fogel A., (1987). Self-organizing systems and infant motor development. Developmental Review, 7, 39 – 65

Tomporowski, P.D., Davis, C.L., Miller, P.H., Naglieri, J.A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psycology Review, 20, 111-131

Van der Borght, K., Havekes, R., Bos, T., Eggen, B.J.L., Van der Zee, E.A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampul neurogenesis. Behavioral Neuroscience, 121, 324–334

Van Praag, H., Christie, B.R., Sejnowski, T.J., Gage, F.H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences, 96, 13427–13431

Vazou, S., Pesce C., Lakes, K., Smiley-Oyen A. (2016). More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. International Journal of Sport and Exercise Psychology, 1-26 Winter, B., Breitenstein, C., Mooren, F.C., Voelker, K., Fobker, M., Lechtermann, A., Krueger,.

K., Fromme, A., Korsukewitz, C., Floel, A., Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87, 597–609. Ario Federici, Antonio Gianni Toscani 110